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Fourier series 

f(x) periodic function with period 2π     ...   f(x + 2π) = f(x) 
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Example:   Let function f(x) is periodic with period 2π and let it is in base interval  
is given by equation f(x) = x . 

Transform it to Fourier series. 
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Result  
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Equivalent transform 

Linear systems 
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Nonlinear systems – brief summary 

( )
U
YAGN ==

signalinput  sinusoidal
output of harmonicsfirst 

( ) ( ) ( )AjbAaAGN +=

( ) ( )AbAa , coefficients of Fourier series for first harmonics 

proportional to surface of static characteristics – for  explicit nonlinerarity = 0 ( )Ab
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Transforming y  to function only using sinus: ϕϕ sincos cbca ==

a
btgbac =+= ϕ;222

( ) [ ] ( )ϕωωϕωϕωω +=+=+= tActctcAtbtaAy sincossinsincoscossin

Equivalent transfer – definition: ( )
U
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( )AGN is independent on frequency ω , it is only function of input amplitude A ! 

Important:  
Imaginary part              is proportional to area of 
static characteristics of nonlinear member. For 
terms with ambiguous nonlinearity: 
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Example: Determine equivalent transfer of nonlinear control member given by statistical 
characteristic of relay type with insensitivity band (given values b, B) by figure. 
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Has been used (figure) 
( ) ( ) ( ) ααπααπααπ cos2cos;coscos;coscos =−−=+−=−

Is angle α unknown – undefined? 

tAu ωsin=
αω =t bu = αsinAb =for                    is                   → 

A
barcsin=α

It is more appropriate to have ωt instead of t on horizontal axis. 
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( ) ( )∫=
T
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It is integrated for whole period T. Period is divided to segments with constant  y(t). 
Output is ωt and therefore are intervals            ,                  ,                        etc. 
Corresponding angle must be divided by ω. After integration we get terms like: 

α,0

απα −,

απαπ +− ,απα −,

and during assignment of limits, the ω is eliminated.  
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Equivalent transfers are in the table. 
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Equivalent transfers are in the table. 
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Computation and display of equivalent transfers 

Example:  Nonlinear member is denoted by equation of its static characteristics 
3uy =

Compute it's equivalent transfer and amplitude characteristics in complex plane. 

Solution: tAu ωsin=

( )ttAtAy ωωω 3sinsin3
4
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4
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Let's ignore third harmonics – definition of equivalent transfer in complex plane 
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Display in complex plane 
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Determining autooscillations in nonlinear circuits 

Autooscillalation (stable limit cycle) 

oscillations with constant amplitude 

determine amplitude and frequency 

avoid their creation 

Existence of autooscillations → output y(t) with phase shift to input by 180° 
but same amplitude. 
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( ) ( ) 1−=AGjG NL ω

common form 

( ) ( ) 01=+AGjG NL ω
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Solution of this equation :  A , ω  (if the autooscillations exist). 

Analytic solution: 

  two equations for two variables A , ω 

real solution 

autooscillations exist and have computed parameters 19 NF-CZ07-MOP-3-202-2015 
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Graphic solution : 
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Example:  Nonlinear control circuit in figure consists of linear proportional system  

( k = 1; T1 = 1; T2 = 1) with ideal two-value controller (B=1). Determine if in the circuit 
emerge autooscillations and if they do determine amplitude and frequency. 
 
Solve analytically and graphically.  
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Solution:      
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Graphic: 
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Example:  Course of ship is controlled using three-value controller. Scheme of controller 
circuit in figure. Time constant of the ship as controlled system is T = 100 s and gain k = 10. 
Determine when the autooscillations do not emerge. 
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Solution: Linear member                     Condition for autooscillation emergence 
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Equivalent transfer of nonlinear member and it's amplitude characteristics. 
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So the characteristics will not intersect (autooscillations will not emerge). 

( ) 100
2.

1
2

414
2

2

2

2
<−=−=

b
b

b
B

A
b

A
BAGN ππ

27 NF-CZ07-MOP-3-202-2015 


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

