

The ACDM-model after Planck Cosmology Talk at Brno University of Technology

Lars Husdal

Department of Physics, NTNU

November 19th, 2015

Lars Husdal (Department of Physics, NTNU)

э

-

grants *A* ... just some numbers about the observable Universe

Carl Sagan as a kid

Age: Temp:	\sim 14 billion years 2.73 Kelvins		
Radius: Volume:	46 billion light years $4.1 \times 10^5 \text{ Gly}^3$	=	$\begin{array}{l} 4.3 \times 10^{26} \ \text{m} \\ 3.5 \times 10^{80} \ \text{m}^{3} \end{array}$

Baryons: Electrons: Photons: Neutrinos:	$10^{80} \\ 10^{80} \\ 10^{89} \\ 10^{89}$	\rightarrow	Hydrogen: Helium: Heavier elements:	74% 25% 1%
Dark Matter Dark Energy	? ?			
Curvature	?			

Standard Cosmology

ACDM model

Lambda-Cold Dark Matter model

- Big bang cosmology with dark energy and cold dark matter
- Simplest model that explains:
 - the existence and structure of the cosmic microwave background.
 - the large scale structure in the distribution of galaxies.
 - the abundances of hydrogen (including deuterium), helium, and lithium.
 - the accelerating expansion of the universe observed in the light from distant galaxies and supernovae.

FLRW metric

Friedmann-Lemaître-Robertson-Walker metric

• Based on Einstein's field equations

$$R_{\mu
u}-rac{1}{2}g_{\mu
u}\,R+g_{\mu
u}\Lambda=rac{8\pi G}{c^4}\,T_{\mu
u}$$

- Describes a homogeneous, isotropic expanding or contracting universe.
- Friedmann's 2 equations:

$$\frac{\dot{a}^2 + kc^2}{a^2} = \frac{8\pi G\rho + \Lambda c^2}{3}$$
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3\rho}{c^2}\right) + \frac{\Lambda c^2}{3}$$

Standard Cosmology

ACDM model

Lambda-Cold Dark Matter model

- Big bang cosmology with dark energy and cold dark matter
- Simplest model that explains:
 - the existence and structure of the cosmic microwave background.
 - the large scale structure in the distribution of galaxies.
 - the abundances of hydrogen (including deuterium), helium, and lithium.
 - the accelerating expansion of the universe observed in the light from distant galaxies and supernovae.

FLRW metric

Friedmann-Lemaître-Robertson-Walker metric

• Based on Einstein's field equations

$$R_{\mu
u}-rac{1}{2}g_{\mu
u}\,R+g_{\mu
u}\Lambda=rac{8\pi G}{c^4}\,T_{\mu
u}$$

- Describes a homogeneous, isotropic expanding or contracting universe.
- Friedmann's 2+1 equations:

$$H^2=rac{8\pi G}{3}
ho$$
 $rac{\ddot{a}}{a}=-rac{4\pi G}{3}(
ho+3
ho)$

$$\dot{
ho} = -3H(
ho+p)$$

grants **Cenarious from solving the Friedmann equations**

• The Equations of State
$$(w = p/\rho)$$

		$ ho \propto$	W
Matter	ρΜ	a^{-3}	0
Radiation	$ ho_{\gamma}$	a^{-4}	1/3
Cosmological constant	ρ_{Λ}	1	-1
Curvature	ρ_k	a^{-2}	-1/3

• Putting this into a modified Friedmann Eq. gives us:

$$\ddot{a}(t) = -rac{1}{2}H_0^2\sum_i \Omega_{i_0}rac{1+3w_{
m i}}{a(t)^{2+3w_{
m i}}}$$
 $a(t) = Ct^{rac{2}{3(1+w)}}$

Planck Satellite

- Launched in 2009.
- Third satellite to study the Cosmic Microwave Background Radiation (CMB).
- Set to replace previous missions: COBE (1989) and WMAP (2001).
- Advantages compared to WMAP:
 - Higher resolution (x3).
 - Higher sensitivity (x10).
 - 9 frequency bands rather than 5, with the goal of improving the astrophysical foreground models.
- Located at the Lagrangian Point L2.
- First results published in March 2013.
- Final results published in February 2015.

æ

Cosmological Parameters

Planck's Six Parameters

Derived	l Para	ameters –
		68% limi
Age of Universe	t_0	13.799 ± 0.022
Hubble Constant	H_0	67.74 ± 0.46
Baryonic & DM	$\Omega_{\rm m}$	0.3089 ± 0.0062
Dark Energy	Ω_{Λ}	0.6911 ± 0.0062
Radiation	Ω_r	10^{-4}
Curvature	Ω_k	0.000 ± 0.005

Expansion History

Chronology of the Universe

norwau

orants

э

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

• Until the electroweak force splits at 10^{-12} s

• Until recombination / γ -decoupling at 377,000 y

Today

Chronology of the Universe

Thank you!

Lars Husdal (Department of Physics, NTNU)

The ACDM-model after Planck

Э 22 / 23 November 19th. 2015

æ

(日) (日) (

